Coordination state of Nb⁵⁺ ions in silicate and gallate glasses as studied by Raman spectroscopy

KOHEI FUKUMI, SUMIO SAKKA

Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611 and Division of Molecular Engineering, Graduate School of Engineering, Kyoto University, Sakyo-Ku, Kyoto 606, Japan

Raman spectra of $K_2O-Nb_2O_5-SiO_2$ glasses are measured in order to compare the coordination state of Nb⁵⁺ ions in gallate glasses with that in silicate glasses. It is found that less-distorted NbO₆ octahedra with no non-bridging oxygens as well as NbO₆ octahedra with non-bridging oxygens and/or with much distortion are present in the $K_2O-Nb_2O_5-SiO_2$ glasses. The Raman band in the 800 to 900 cm⁻¹ region is attributed to the NbO₆ octahedra with non-bridging oxygens and/or with much distortion. The broad bands in the 600 to 800 cm⁻¹ region are attributed to less-distorted NbO₆ octahedra with no non-bridging oxygens. An increase in the molar ratio Nb₂O₅/K₂O leads to an increase in the oxygens shared by more than two polyhedra and/or a decrease in non-bridging oxygens for the NbO₆ octahedra which possess non-bridging oxygens, or to an increase of distortion for much-distorted NbO₆ octahedra. At the same time, an increase in the molar ratio Nb₂O₅/K₂O increases the less-distorted NbO₆ octahedra with no non-bridging oxygens. In short, GaO₄ tetrahedra and NbO₆ octahedra compete to attract alkali ions in gallate glasses but such competition is not found in silicate glasses.

1. Introduction

Nb₂O₅ is known as an intermediate oxide for glass formation. It has been shown that in alkali niobium gallate glasses Ga³⁺ ions mainly form GaO₄ tetrahedra and Nb⁵⁺ ions distorted NbO₆ octahedra with a short Nb-O bond [1]. It is possible that there are complex interactions between NbO_6 octahedra and GaO_4 tetrahedra in alkali niobium gallate glasses, since a GaO₄ tetrahedron requires an alkali ion to compensate its excess negative charge and GaO₆ octahedra or oxygens shared by three GaO₄ tetrahedra are formed in gallate crystals when the alkali content is small. It is expected that the interaction between silicate and niobate anions in niobium-containing silicate glasses would be simpler than that between gallate and niobate anions in the niobium-containing gallate glasses, because the coordination number of silicon atoms for oxygens is usually constant at four in silicate glasses and a silicon atom does not require an alkali ion to form an SiO₄ tetrahedron. This indicates that a comparison of the structure of alkali niobium gallate glasses with that of alkali niobium silicate glasses will help us to understand the structural state of Nb⁵⁺ ions in gallate glasses.

 $K_2O-Nb_2O_5$ -SiO₂ glasses were selected for the study, considering that the $K_2O-Nb_2O_5$ -SiO₂ system has a very wide glass-forming region in which the molar ratio Nb_2O_5/SiO_2 can be widely varied [2].

2. Experimental procedure

The compositions of the glasses prepared are shown in

Fig. 1, in which the glass-forming region reported by Imaoka and Yamazaki [2] is also shown. Extra-pure K_2CO_3 , Nb_2O_5 and SiO_2 were used as raw materials. The mixture of raw materials was melted at 1550° C for 30 min in a platinum crucible in an electrically heated furnace. The melt was poured on to an iron plate and pressed by another iron plate to form a glass plate 1 to 3 mm thick, which was used for the Raman scattering measurements. The Raman scattering measurement was made with a Japan Spectroscopic Co. (Jasco) Type NR-1000s laser-Raman spectrometer using the 514.5 nm line of an Ar⁺ laser as the exciting beam.

3. Results

Raman spectra of $50K_2O \cdot 50SiO_2$ and $xK_2O \cdot (100 - 100)$ 2x)Nb₂O₅ · xSiO₂ glasses are shown in Fig. 2. In the $50K_2O \cdot 50SiO_2$ glass, there are bands at 290 to 350 cm⁻¹ and at about 575, 600, 835, 975 and 1025 cm^{-1} . The band at about 975 cm^{-1} is the strongest band in the 800 to $1100 \,\mathrm{cm}^{-1}$ region. In the Raman spectra of $xK_2O \cdot (100 - 2x)Nb_2O_5 \cdot xSiO_2$ glasses, the largest band is located at 800 to $900 \,\mathrm{cm}^{-1}$. Other bands observed at about 600, 925 to 945 and about 1060 cm⁻¹ have smaller intensities than the band at $800 \text{ to } 900 \text{ cm}^{-1}$. The band at $800 \text{ to } 900 \text{ cm}^{-1}$ increases in intensity and the bands at about 600, 925 to 945 and about $1060 \,\mathrm{cm}^{-1}$ decrease in intensity with increasing Nb₂O₅ content. The bands at about 600 and 1060 cm⁻ are no longer found in the spectra of the glasses with 20 and 30 mol % Nb₂O₅, respectively. A broad band is

Figure 1 The compositions of glasses prepared in this work. The glass-forming region after Imaoka and Yamazaki [2] is also shown.

observed in the region 600 to 800 cm^{-1} in the spectra of the glasses with 20 and 30 mol % Nb₂O₅ and increases in intensity with increasing Nb₂O₅ content. The band at 800 to 900 cm^{-1} shifts toward higher wavenumbers with increasing Nb₂O₅ content. A band at about 230 cm⁻¹ appears on the addition of Nb₂O₅ to $50K_2O \cdot 50SiO_2$ glass and increases in intensity with increasing Nb₂O₅ content. At the same time, the band at 290 to 350 cm^{-1} which is observed in the $50K_2O \cdot$ $50SiO_2$ glass decreases.

Raman spectra of the $50K_2O \cdot 30Nb_2O_5 \cdot 20SiO_2$ and $30K_2O \cdot 10Nb_2O_5 \cdot 60SiO_2$ glasses are shown in Fig. 3. A distinct band is observed at about 860 cm^{-1} in these glasses. The broad band in the 600 to 800 cm^{-1} region in these glasses is very weak. Small bands are found at about 540 and 1040 cm^{-1} in $50K_2O \cdot 30Nb_2O_5 \cdot 20SiO_2$ glass and at about 525 and 1090 cm^{-1} in $30K_2O \cdot 10Nb_2O_5 \cdot 60SiO_2$ glass. Two distinct bands are also observed at about 220 and 295 cm^{-1} in the former glass, and a broad band is observed at about 260 cm^{-1} in the latter glass.

4. Discussion

4.1. Band assignment

In silicate glasses, the bands near 850 cm^{-1} , near 900 cm^{-1} , at $950 \text{ to } 1000 \text{ cm}^{-1}$ and at $1050 \text{ to } 1100 \text{ cm}^{-1}$ have been assigned [3] to symmetric silicon-oxygen stretching motion of silicate units containing SiO₄ tetrahedra with four, three, two and one non-bridging oxygens, respectively, and the bands in the 400 to 700 cm^{-1} region are associated with the presence of bridging oxygens.

In the Nb₂O₅-containing silicate glasses, the band in the 800 to 900 cm⁻¹ region is very strong compared with the bands at 600, 925 and 1055 cm⁻¹. The Raman spectra of alkali niobium gallate glasses show that a strong band due to NbO₆ octahedra is observed in the 800 to 900 cm⁻¹ region [1]. Therefore, the band in the 800 to 900 cm⁻¹ region in Nb₂O₅-containing silicate glasses can be attributed to NbO₆ octahedra.

The Raman peak wavenumbers of strong bands in niobate crystals hitherto reported are shown in Fig. 4. Crystals of MNb_2O_6 (M = Mg, Ca, Mn, Ni, Zn and Cd) [4], Li_3NbO_4 [5], $Mg_4Nb_2O_9$ [5], $Sr_3MgNb_2O_9$ [6]

Figure 2 Raman spectra of $xK_2O \cdot (100 - 2x)Nb_2O_5 \cdot xSiO_2$ glasses: (a) $35K_2O \cdot 30Nb_2O_5 \cdot 35SiO_2$, (b) $40K_2O \cdot 20Nb_2O_5 \cdot 40SiO_2$, (c) $45K_2O \cdot 10Nb_2O_5 \cdot 45SiO_2$, (d) $47.5K_2O \cdot 5Nb_2O_5 \cdot 47.5SiO_2$, (e) $50K_2O \cdot 50SiO_2$.

Figure 3 Raman spectra of (a) $50K_2O \cdot 30Nb_2O_5 \cdot 20SiO_2$ and (b) $30K_2O \cdot 10Nb_2O_5 \cdot 60SiO_2$ glasses.

Figure 4 Strong bands observed in the Raman spectra of various niobate crystals. *Intensities are shown only by abbreviations, instead of schematic representation in reference. [†]Only the strong bands due to NbO₆ octahedra are shown.

and $Sr_3CaNb_2O_9$ [6] consisting of NbO₆ octahedra with non-bridging oxygens and α -NbPO₅ [7] and AlNbO₄ [8] consisting of much-distorted NbO₆ octahedra show a strong band at wavenumbers above 800 cm^{-1} . On the other hand, no distinct bands are found in this wavenumber region of the spectra of LiNbO₃ [9, 10], BaNb₂O₆ [11], SrNb₂O₆ [12], PbNb₂O₆ [13], NaBa₂Nb₃O₁₅ [10, 14] and KSr₂Nb₂O₁₅ [14] crystals which have no non-bridging oxygens. This indicates that the band due to NbO₆ octahedra in the $800 \text{ to } 900 \text{ cm}^{-1}$ region of the Raman spectra of glasses can be assigned to the NbO₆ octahedra with nonbridging oxygens and/or with much distortion.

A strong band is found at 880 to $905 \,\mathrm{cm}^{-1}$ in the Raman spectra of MNb₂O₆ crystals [4] which consists of NbO₆ octahedra having a non-bridging oxygen, two oxygens shared by two NbO₆ octahedra and three oxygens shared by three NbO_6 octahedra [15]. On the other hand, a band is observed at about $840 \,\mathrm{cm}^{-1}$ in the Raman spectra of Li₃NbO₄ which consists of NbO₆ octahedra having three non-bridging oxygens and three oxygens shared by three NbO₆ octahedra [16]. This indicates that an increasing number of nonbridging oxygens in an NbO₆ octahedron which possesses non-bridging oxygens decreases the wavenumber of the band in the region above about $800 \,\mathrm{cm}^{-1}$. This band is observed at 810 to 840 cm^{-1} in Mg₄Nb₂O₉ [5], $Sr_3MgNb_2O_9$ [6] and $Sr_3CaNb_2O_9$ [6] crystals, which consist of NbO₆ octahedra having three non-bridging oxygens and three oxygens shared by two NbO₆ octahedra [6, 17, 18], indicating that the peak wavenumber of the band in the region above 800 cm^{-1} may decrease with a decreasing number of oxygens shared by three NbO₆ octahedra in an NbO₆ octahedron with non-bridging oxygens.

α-NbPO₅ consists of a chain of much-distorted NbO₆ octahedra having four oxygens shared with PO_4 tetrahedra and two oxygens shared with NbO₆ octahedra, and there are both short and long Nb-O bonds in an NbO₆ octahedron within the chain [19]. An AlNbO₄ crystal consists of much-distorted NbO₆ and AlO₆ octahedra. An NbO₆ octahedron has one oxygen shared by two octahedra, four oxygens shared by three octahedra and an oxygen shared by two octahedra and has two short Nb-O bonds and two long Nb-O bonds [20]. The band due to NbO₆ octahedra is observed at about 800 and 940 cm⁻¹ in the spectra of the former and the latter crystals, respectively [7, 8]. This indicates that an increase of distortion and/or increase in the number of the oxygens shared by three or four polyhedra may increase the peak wavenumber of the band in the region above about $800 \,\mathrm{cm}^{-1}$.

The broad band found in the 600 to 800 cm^{-1} region increases in intensity with increasing Nb₂O₅ content of $xK_2O \cdot (100 - 2x)Nb_2O_5 \cdot xSiO_2$ glasses, indicating that this band is concerned with Nb⁵⁺ ions. As the bands in the 500 to 800 cm^{-1} region are found in niobate crystals which have no non-bridging oxygens, such as LiNbO₃ [9, 10], BaNb₂O₆ [11], SrNb₂O₆ [12], PbNb₂O₆ [13], NaBa₂Nb₅O₁₅ [10, 14] and KSr₂Nb₅O₁₅ [14], the broad bands found in the 600 to 800 cm^{-1} region in these glasses are attributed to the lessdistorted NbO₆ octahedra with no non-bridging oxygens.

4.2. Structure of $K_2O-Nb_2O_5-SiO_2$ glasses

In the Raman spectrum of $50K_2O \cdot 50SiO_2$, bands are observed at about 575, 600, 835, 975 and 1025 cm^{-1} . The band at about 975 cm⁻¹ is the strongest band in the 800 to 1100 cm^{-1} region, indicating that SiO_4 tetrahedra with two non-bridging oxygens are the main structural unit in the glass.

In the Raman spectra of $K_2O-Nb_2O_5-SiO_2$ glasses, the bands due to silicate units decrease in intensity with increasing Nb_2O_5 content, indicating that the concentration of silicate units decreases and that of niobate units increases with increasing Nb_2O_5 content. The band due to silicate units is already very weak compared with the band in the 800 to 900 cm⁻¹ region in 47.5K₂O · 5Nb₂O₅ · 47.5SiO₂ glass. This has not been caused by a decrease of silicate units but by the strong intensity of the band at about 800 to 900 cm⁻¹ due to NbO₆ octahedra.

In the Raman spectra of $xK_2O \cdot (100 - 2x)Nb_2O_5 \cdot xSiO_2$ glasses, the broad band in the 600 to 800 cm^{-1} region increases with increasing Nb_2O_5 content. On the other hand, in $50K_2O \cdot 30Nb_2O_5 \cdot 20SiO_2$ glasses, the broad band in the 600 to 800 cm^{-1} region is small. This indicates that the less-distorted NbO_6 octahedra with no non-bridging oxygens increase with increasing molar ratio Nb_2O_5/K_2O .

In $K_2O-Nb_2O_5-SiO_2$ glasses, the band in the 800 to 900 cm⁻¹ region is the major band due to NbO₆ octahedra and the broad band in the 600 to 800 cm⁻¹

Figure 5 Peak wavenumbers of the band in the 800 to 900 cm⁻¹ region in the Raman spectra of different glasses [1] against K_2O or Cs_2O content: (O) $K_2O-Nb_2O_5-SiO_2$, (\blacktriangle) $K_2O-Nb_2O_5-Ga_2O_3$, (\blacksquare) $Cs_2O-Nb_2O_5-Ga_2O_3$.

region increases with increasing molar ratio Nb_2O_5/K_2O . This indicates that Nb^{5+} ions form mainly the NbO_6 octahedra with non-bridging oxygens and/or with much distortion when the molar ratio Nb_2O_5/K_2O is small, and that the less-distorted NbO_6 octahedra with non-bridging oxygens increase and the NbO_6 octahedra with non-bridging oxygens and/or much distortion decrease with increasing molar ratio Nb_2O_5/K_2O .

The peak wavenumber of the band at 800 to 900 cm^{-1} is plotted against K₂O content and the molar ratio Nb₂O₅/K₂O in Figs 5 and 6, respectively, where the peak wavenumbers of the band in alkali niobium gallate glasses are also shown [1]. As shown in Figs 5 and 6, the peak wavenumber of the band in the 800 to 900 cm^{-1} region depends on the molar ratio Nb₂O₅/K₂O rather than the K₂O content in the silicate glasses, indicating that an increase of Nb₂O₅ content relative to K₂O content leads to a decrease of non-bridging oxygens in an NbO₆ octahedron, an increase in the oxygens shared by more than two polyhedra, and/or an increase in the distortion of NbO₆ octahedra.

The band in the 950 to 1000 cm^{-1} region is observed at about 975 cm^{-1} in $50\text{K}_2\text{O} \cdot 50\text{SiO}_2$ glass, and the band shifts toward lower wavenumbers with increasing

Figure 6 Peak wavenumbers of the band in the 800 to 900 cm^{-1} region in the Raman spectra of different glasses [1] against the ratio of Nb₂O₅ content to the K₂O or Cs₂O content: (\odot) K₂O-Nb₂O₅-SiO₂, (\blacktriangle) K₂O-Nb₂O₅-Ga₂O₃, (\blacksquare) Cs₂O-Nb₂O₅-Ga₂O₃.

Figure 7 Comparison of Raman spectrum of (a) $35K_2O-30Nb_2O_5-35SiO_2$ glass with that of (b) $40K_2O-30Nb_2O_5-30Ga_2O_3$ glass [1].

 Nb_2O_5 content. In the potassium silicate glasses, the band at about 975 cm⁻¹ shifts to 935 cm⁻¹ with decreasing K₂O content [21]. This suggests that the content of network-modifying oxide decreases with increasing Nb_2O_5 content; that is, Nb_2O_5 does not act as a network modifier.

4.3. Comparison of the Raman spectra of silicate glasses with gallate glasses

Raman bands due to NbO₆ octahedra observed in alkali niobium gallate glasses [1] are also observed in alkali niobium silicate glasses as shown in Fig. 7, indicating that the coordination state of Nb⁵⁺ ions observed in gallate glasses is similar to that in silicate glasses. However, the dependences of the peak wavenumber of the band in the 800 to $900 \,\mathrm{cm}^{-1}$ region on glass composition are different. The peak wavenumber in the silicate glasses depends on the ratio of alkali oxide to Nb₂O₅ oxide rather than the alkali oxide content, as shown in Figs 5 and 6. In other words, it does not depend on the SiO₂ content. On the other hand, in the gallate glasses, the peak wavenumber mainly depends on the alkali oxide content [1], as shown in Fig. 5; that is, the peak wavenumber mainly depends on both Ga₂O₃ content and Nb₂O₅ content. As Ga³⁺ ions require alkali ions to compensate the excess negative charge of GaO₄ tetrahedra in the gallate glasses, GaO₄ tetrahedra and NbO₆ octahedra compete to take alkali ions. On the other hand, such a requirement is not necessary for SiO₄ tetrahedra in silicate glasses, and NbO₆ octahedra in silicate glasses can obtain alkali ions more freely than in the gallate glasses. Therefore, the peak wavenumber of the band in the 800 to 900 cm⁻¹ region depends on the molar ratio of Nb₂O₅/K₂O and the alkali oxide content, respectively, in the silicate glasses and gallate glasses.

5. Conclusion

It has been shown that the broad band in the 600 to

800 cm⁻¹ region is attributed to the less-distorted NbO₆ octahedra with no non-bridging oxygens in silicate glasses. In the silicate glasses, Nb⁵⁺ ions form less-distorted NbO₆ octahedra with no non-bridging oxygens as well as NbO₆ octahedra with non-bridging oxygens and/or much distortion. The peak wavenumber of the band in the 800 to $900 \,\mathrm{cm}^{-1}$ region increases and the band in the 600 to $800 \,\mathrm{cm^{-1}}$ increases in intensity with increasing molar ratio Nb_2O_5/K_2O_5 indicating that an increase of the molar ratio $Nb_2O_5/$ K₂O leads to a decrease in the non-bridging oxygens and/or an increase in the oxygens shared by more than two polyhedra in NbO₆ octahedra which possess nonbridging oxygens, or it leads to an increase in the distortion of the much-distorted NbO₆ octahedra. At the same time, an increase of the molar ratio $Nb_2O_5/$ K_2O leads to an increase in the less-distorted NbO₆ octahedra with no non-bridging oxygens. In summary, it has been shown that GaO_4 tetrahedra and NbO₆ octahedra compete to take alkali ions in gallate glasses, but in silicate glasses such a competition is not necessary for NbO_6 octahedra.

Acknowledgement

This work was supported by the Grant-in-Aid for Scientific Research, Studies on Structure and Properties of New, Non-Silicate Oxide Glasses (No. 60 430 020) from the Ministry of Education, Science and Culture, Japan.

References

1. K. FUKUMI and S. SAKKA, J. Non-Cryst. Solids 84 (1986) 100.

- M. IMAOKA and T. YAMAZAKI, Rep. Inst. Industr. Sci., Univ. Tokyo, 18(4) (1968) 1.
- 3. P. McMILLAN, Amer. Mineral. 69 (1984) 622.
- 4. E. HUSSON, Y. REPELIN, NGUYEN QUY DAO and H. BRUSSET, Spectrochim. Acta 33A (1977) 995.
- G. BLASSE and G. P. M. VAN DEN HEUVEL, Z. Phys. Chem. N.F. 84 (1973) 114.
- 6. G. BLASSE and A. F. CORSMIT, J. Solid State Chem. 10 (1974) 39.
- 7. G. T. STRANFORD and R. A. CONDRATE, *ibid.* 52 (1984) 248.
- 8. G. BLASSE and R. U. E. 'tLAM, ibid. 25 (1978) 77.
- 9. R. F. SCHAUFELE and M. J. WEBER, *Phys. Rev.* 152 (1966) 705.
- 10. S. D. ROSS, J. Phys. C 3 (1970) 1785.
- 11. Y. REPELIN, E. HUSSON and H. BRUSSET, Spectrochim. Acta 35A (1979) 937.
- Y. REPELIN, E. HUSSON, NGUYEN QUY DAO and H. BRUSSET, *ibid.* 35A (1979) 1165.
- 13. Idem, 36A (1980) 253.
- 14. G. BURNS, J. D. AXE and D. F. O'KANE, Solid State Commun. 7 (1969) 933.
- J. P. GUMMINGS and S. H. SIMONSEN, Amer. Mineral. 55 (1970) 90.
- J.-C. GRENIER, C. MARTIN and A. DURIF, Bull. Soc. Fr. Miner. Crist. 87 (1964) 316.
- E. F. BERTAUT, L. CORLISS, F. FORRAT, R. ALEONARD and R. PAUTHENET, J. Phys. Chem. Solids 21 (1964) 234.
- 18. F. GALASSO and J. PYLE, Inorg. Chem. 2 (1963) 482.
- 19. J. M. LONGO and P. KIERKAGAARD, Acta Chem. Scand. 20 (1966) 72.
- 20. B. F. PEDERSEN, ibid. 16 (1962) 421.
- 21. S. A. BRAWER and W. B. WHITE, J. Chem. Phys. 63 (1975) 2421.

Received 17 August and accepted 1 December 1987